Generators, Light Towers, Compressors, and Heaters Used Compressors Costa Mesa - Power is transferred into potential energy and stored as pressurized air inside of an air compressor. These machines rely on gasoline, diesel or electric motors to force air into a special storage tank, subsequently increasing the pressure. Once the tank reaches its' upper limit, the air compressor turns off, as the compressed air is held into the tank until needed. Compressed air is used for many applications. Once the kinetic energy in the air tank is used up, the tank undergoes depressurization. Once the lower limit is reached, the air compressor turns on again to start the pressurization process again. Positive Displacement Air Compressors There are multiple methods for air compression. They are divided into roto-dynamic or positive-displacement categories. In the positive-displacement method, air compressors force the air into a space with decreased volume and this compresses the air. After maximum pressure is attained, a valve or port opens and the air is discharged into the outlet system from the compression chamber. There are different kinds of positive-displacement compressors including Vane Compressors, Piston-Type and Rotary Screw Compressors. Dynamic Displacement Air Compressors Axial compressors and centrifugal air compressors fall under the dynamic displacement air compressors. These units rely on a rotating component to discharge the kinetic energy and transform it into pressure energy. There is a spinning impeller to generate centrifugal force. This mechanism accelerates and decelerates the contained air to produce pressurization. Air compressors generate heat and require a method for heat disposal; usually with some type of air cooling or water. Compressor cooling also relies on atmospheric changes. Certain equipment factors need to be considered including the available compressor power, inlet temperature, ambient temperature and the location of the application. Air Compressor Applications Air compressors are used in many different industries. For example, supplying clean air at moderate pressure to a diver that is supplied for surface submersion, supplying clean air of high-pressurization to fill gas cylinders and supplying pneumatic HVAC controls with moderately pressurized clean air to power pneumatic tools including jackhammers and filling up high-pressure air tanks to fill vehicle tires. There are many industrial applications that rely on moderate air pressure. Types of Air Compressors Most air compressors are the reciprocating piston style, the rotary vane model or the rotary screw kind. These air compressor models are utilized for portable and smaller applications. Air Compressor Pumps Oil-less and oil-injected are the two main kinds of air-compressor pumps. The oil-free system relies on more technical components; however, it lasts for less time in comparison to oil-lubed pumps and is more expensive. Better quality is provided by oilfree systems. Power Sources There are a variety of power sources that can be used alongside air compressors. Electric, gas and diesel-powered models are the most popular; although, other models have been engineered to use hydraulic ports, power-take-off or vehicle engines that are often utilized in mobile applications. Often, gas and diesel-powered models are used in remote places that do not have great electricity access. These models are quite loud and require proper ventilation for their exhaust. Electricpowered air compressors are common in workshops, garages, production facilities and warehouses where electricity is abundant. Rotary-Screw Compressor One of the most popular air compressors available is the rotary-screw model. This model of gas compressor relies on a positive-displacement mechanism of the rotary type. These models are often used to replace piston compressors in vast industrial applications where large volumes of high-pressure air are required. High-power air tools and impact wrenches are popular. Gas compression of a rotary-screw model features a sweeping, continuous motion, allowing minimal pulsation which is common in piston model compressors and may cause a less desirable flow surge. Rotors are used by the rotary-screw compressors to make gas compression possible. There are timing gears affixed on the dry-running rotary-screw compressors. These components are responsible to make sure the female and male rotors operate in perfect alignment. In oil-flooded rotary-screw compressors, the space between the rotors is lubricated. A hydraulic seal is created which transforms the mechanical energy in between the rotors at the same time. Beginning at the suction location, as the screws rotate, gas traverses through the threads, causing the gas to pass through the compressor and leave via the screws ends. Success and overall effectiveness rely on specific clearances being achieved between the sealing chamber of the compression cavities, the rotors and the helical rotors. Fast speed and rotation are behind minimizing the ratio of a leaky flow rate or an effective flow rate. Many applications including food processing plants, automated manufacturing facilities and other industrial job sites rely on rotary-screw compressors. Besides fixed units, there are mobile versions in tow-behind trailers that are powered with small diesel engines. Also known as "construction compressors," portable compression systems are popular for sandblasting, industrial paint systems, construction crews, pneumatic pumps, riveting tools and more. Scroll Compressor A scroll compressor is used to compress refrigerant. It is popular with supercharging vehicles, in vacuum pumps and commonly used in air-conditioning. These compressors are used in a variety of places to replace reciprocating and traditional wobble-plate compressors. They are used in residential heat pumps, automotive air-conditioning units and other air-conditioning systems. Fluids including gases and liquids are pumped, compressed and pressurized with the dual interleaving scrolls on this compressor. Usually, one of the scrolls is fixed, while the second scroll is capable of orbiting with zero rotation. This action traps and pumps or compresses fluid between the two scrolls. The compression movement happens when the scrolls synchronously rotate with their rotation centers misaligned to create an orbiting motion. Flexible tubing variations contain the Archimedean spiral that operates similar to a tube of toothpaste and acts like a peristaltic pump. Casings contain a lubricant to prevent exterior abrasion of the pump. The lubricant additionally helps to dispel heat. With zero moving items coming into contact with the fluid, the peristaltic pump is an inexpensive solution. The lack of glands, seals and valves keeps them simple to operate and fairly inexpensive in terms of maintenance. Compared to additional pump items, this tube or hose piece is fairly low cost.